首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19709篇
  免费   2248篇
  国内免费   1551篇
电工技术   1269篇
技术理论   1篇
综合类   1622篇
化学工业   4234篇
金属工艺   1090篇
机械仪表   734篇
建筑科学   1237篇
矿业工程   606篇
能源动力   930篇
轻工业   1000篇
水利工程   547篇
石油天然气   1324篇
武器工业   303篇
无线电   2006篇
一般工业技术   3173篇
冶金工业   701篇
原子能技术   578篇
自动化技术   2153篇
  2024年   38篇
  2023年   472篇
  2022年   532篇
  2021年   698篇
  2020年   781篇
  2019年   680篇
  2018年   682篇
  2017年   804篇
  2016年   876篇
  2015年   819篇
  2014年   1125篇
  2013年   1382篇
  2012年   1320篇
  2011年   1530篇
  2010年   1136篇
  2009年   1094篇
  2008年   1113篇
  2007年   1260篇
  2006年   1107篇
  2005年   964篇
  2004年   814篇
  2003年   684篇
  2002年   532篇
  2001年   479篇
  2000年   348篇
  1999年   329篇
  1998年   264篇
  1997年   258篇
  1996年   239篇
  1995年   190篇
  1994年   169篇
  1993年   127篇
  1992年   109篇
  1991年   101篇
  1990年   93篇
  1989年   86篇
  1988年   61篇
  1987年   37篇
  1986年   36篇
  1985年   33篇
  1984年   29篇
  1983年   21篇
  1982年   13篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1977年   3篇
  1976年   3篇
  1974年   5篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.  相似文献   
32.
Beyond the catalytic activity of nanocatalysts, the support with architectural design and explicit boundary could also promote the overall performance through improving the diffusion process, highlighting additional support for the morphology-dependent activity. To delineate this, herein, a novel mazelike-reactor framework, namely multi-voids mesoporous silica sphere (MVmSiO2), is carved through a top-down approach by endowing core-shell porosity premade Stöber SiO2 spheres. The precisely-engineered MVmSiO2 with peripheral one-dimensional pores in the shell and interconnecting compartmented voids in the core region is simulated to prove combined hierarchical and structural superiority over its analogous counterparts. Supported with CuZn-based alloys, mazelike MVmSiO2 nanoreactor experimentally demonstrated its expected workability in model gas-phase CO2 hydrogenation reaction where enhanced CO2 activity, good methanol yield, and more importantly, a prolonged stable performance are realized. While tuning the nanoreactor composition besides morphology optimization could further increase the catalytic performance, it is accentuated that the morphological architecture of support further boosts the reaction performance apart from comprehensive compositional optimization. In addition to the found morphological restraints and size-confinement effects imposed by MVmSiO2, active sites of catalysts are also investigated by exploring the size difference of the confined CuZn alloy nanoparticles in CO2 hydrogenation employing both in-situ experimental characterizations and density functional theory calculations.  相似文献   
33.
Equilibrium swelling and rheological tests were adopted to systematically investigate the effects of softener type and dosage on the crosslink densities. The results turned out that the chemical crosslink density could be distinguished from the physical crosslink density by comparing the results of equilibrium swelling and rheological tests. The liquid butadiene (LB) as a softener leads to the greatest reduction in crosslink density, followed by polyethylene wax (PW) and paraffinic oil (PO). The tensile strength decreases with increasing PO content while shows peak values with increase of LB and PW contents. The dependencies of chemical crosslink density on the aging time under 150°C are quite different for the three softeners, which can be expected from the double crosslinking networks consisting of small softener and large main crosslinking networks. Further investigation has been performed to correlate the tensile strength with chemical crosslink density of ethylene propylene diene monomer elastomer vulcanizates. Three different linear relationships can be obtained for the softeners independent of the aging time. It can now be expected from this study that the role of some new softeners in rubber compounds is not only confined to plasticization but also forms crosslinking networks in the peroxide-cured rubbers.  相似文献   
34.
《Advanced Powder Technology》2021,32(8):3023-3033
Coccoliths are micro-structured biomineral particles found in cell protective covering layers of coccolithophore species. They are mainly composed of CaCO3 and their individual crystal entities are arranged in such a way that they construct complex and unique structures. This complexity is found down to the individual particle level and appears to have promising properties to offer. This study focuses on the essential step prior to any kind of implementation, which is the recovery of the material. It summarizes cleaning protocols found in literature, compares them for the first time for the same freshly cultivated material and addresses challenges that still need to be overcome. Further, it highlight the advantages and disadvantages of the best cleaning protocols, suggests optimizations with promising results and uses size distribution measurements to analyse the recovery efficiency. To that end, further characterization techniques, new for coccoliths, are introduced and used to improve our current knowledge of the particles behaviour.  相似文献   
35.
Because China has put more emphasis on people with disabilities, their living conditions and protection have received increasing attention. In an emergency, the visually impaired people are limited in their ability to evacuate, especially along egress paths with obstacles. This paper studied the relationship between the travel time of visually impaired people and obstacle density in their path. Eight sighted people and 32 people with visual impairments were chosen to carry out the walking experiment. The results of the experiment showed that the travel time of sighted people was shorter than that of visually impaired people under the same obstacle and non‐obstacle situations. Based on the analysis of variance of travel time, it was clear from the results that the travel time of the visually impaired people rapidly increased when there were obstacles. When the obstacle density was kept to within a certain range, there was no obvious increase in travel time. Once the density exceeded this range, there was another obvious increase. Based on this result, it can be seen that keeping the obstacle density to within a certain range could be helpful for the visually impaired people during an evacuation when the egress paths cannot be made obstacle‐free.  相似文献   
36.
《Ceramics International》2019,45(11):14084-14089
Undoped and Cu-doped ZnSe nanoparticle (NPs) were prepared and grown hydrothermally in aqueous media assisted by microwave irradiation (MWIR) at different synthesis conditions of pH and MWIR times. In the mentioned process, sodium hydroxide (NaBH4), used for preparing selenium ions source with dissolving it and selenium powder in deionized water. To investigate the structural aspects and nanoparticles morphology, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used. According to the results of XRD, no displacement was seen in the position of XRD peaks of ZnSe nanoparticles by altering the pH and microwave irradiation time. XRD analysis demonstrated cubic zinc blende NPs and TEM images indicated round shape morphology of them. Depending to the microwave irradiation time, upon the XRD outputs, the size of the synthesized NPs were in the range of 1.54–2.18 nm. In this research, for samples synthesized at different pHs (= 8, 10.2, 11.2 and 12.2), at two microwave irradiation time of 0 and 6 min, and also at the presence of Cu-dopant (with the contents of 0, 0.1,0.75 and 1.5%), structural characteristics such as dislocation density(δ), lattice strain(ε), size of nanoparticles (D) and full width at half maximum (FWHM:βhkl) have been evaluated upon the Scherrer and Williamson-Hall methods, in which undoped and ZnSe:Cu 0.1% synthesized at pH = 11.2 have the best crystalline quality; such results for the optimum samples, introduce them as promising materials in optoelectronic devices. The results of structural features obtained from Scherrer and Williamson-Hall approaches are highly intercorrelated and show the same trends with the variation of synthesis conditions.  相似文献   
37.
Waste ceramic sands were effectively used to prepare the high-intensity and low-density ceramic proppants, realising the recycling of the waste ceramic sands. The technology involved the pelletising in an intensive mixer, in which the waste ceramic sands and other starting materials were added, and followed by heat-treatment under different sintering conditions. The sintering temperature, holding time and heating rate were optimised by investigating the crystalline phase, microstructure, density and breakage ratio of the obtained proppants. The results showed that the proppants sintered at 1260°C for 2?h with a heating rate of 5°C?min–1 under air atmosphere exhibited high crush resistance and low density, with the breakage ratio of 8.5% under 52?MPa closure pressure and bulk density of 1.65?g?cm–3. The proppants prepared by bauxite, waste ceramic sands and sintering aids are promising candidates as high-intensity and low-density fracturing proppants in future applications.  相似文献   
38.
Histograms are convenient non-parametric density estimators, which continue to be used ubiquitously. Summary quantities estimated from histogram-based probability density models depend on the choice of the number of bins. We introduce a straightforward data-based method of determining the optimal number of bins in a uniform bin-width histogram. By assigning a multinomial likelihood and a non-informative prior, we derive the posterior probability for the number of bins in a piecewise-constant density model given the data. In addition, we estimate the mean and standard deviations of the resulting bin heights, examine the effects of small sample sizes and digitized data, and demonstrate the application to multi-dimensional histograms.  相似文献   
39.
ABSTRACT

Boron carbide (B4C) ceramics has many outstanding performance, such as extremely high hardness, low density, high melting point, high elastic modulus, high thermoelectromotive force, high chemical resistance, high neutron absorption cross section, high impact and excellent wear resistance. Therefore, B4C ceramics can be used in various industrial applications, such as lightweight ceramic armour, high temperature thermocouples, neutron absorber, reactor control rods in nuclear power engineering, polishing media for hard materials, abrasive media for lapping and grinding, and wear resistant components (blasting nozzles, die tips and grinding wheels). Pressureless sintering is the method with industrialised application value for B4C ceramics, however, it is impossible to sinter pure B4C ceramics to high densities without additives by pressureless sintering. So sintering additives must be used to promote the densification of B4C ceramics. The different sintering additives used to promote the densification of boron carbide will be described in this review, including carbon additives, metallic additives, oxide additives, non-oxide additives, combined additives and rare earth oxide additives. Finally, the recent research trends for sintering methods and sintering additives of B4C ceramics will also be proposed.  相似文献   
40.
目的研究纳米氧化锌/低密度聚乙烯膜(low density polyethylene film,LDPE)中锌(Zn)向食品的迁移行为,探究其迁移规律。方法选取2种食品模拟物(3%乙酸及超纯水)及真实食品(食用白醋及瓶装水),在3种不同实验温度下(70、40及20℃),研究锌向食品模拟物的迁移规律。采用扫描电子显微镜(scanning electron microscope,SEM)和原子力显微镜(atomic force microscope,AFM)表征纳米ZnO/LDPE膜的表面形貌。结果锌向酸性模拟物中的迁移率远远大于水性模拟物中的迁移率,其中锌向酸性模拟物中的最大迁移率分别为22.7%,20.3%及18.6%(ZL-1,ZL-2及ZL-2#),向水性模拟物中的最大迁移率分别为9.9%,5.7%及4.9%(ZL-1,ZL-2及ZL-2#);锌向酸性食品的迁移量(1.59~5.03 mg/g)同样高于向水性食品的迁移量(2.98~24.60μg/g);随着纳米ZnO的初始含量变大迁移率变小;而偶联剂的加入对锌的迁移有一定的抑制作用。随着纳米ZnO浓度的增加,在薄膜中观察到纳米ZnO的不规则形貌。结论纳米ZnO/LDPE膜不适合在高温下包装食物,且其在酸性食品中的安全隐患高于水性食品。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号